skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chiti, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present Magellan/IMACS and Magellan/MIKE spectroscopy of the ultra-faint dwarf (UFD) galaxy Pictor~II (Pic~II) that is located only 12 kpc from the Large Magellanic Cloud (LMC). From the IMACS spectroscopy, we identify 13 member stars and measure a mean heliocentric velocity of , a velocity dispersion of , a mean metallicity of , and an upper limit on the metallicity dispersion of . We measure detailed elemental abundances for the brightest star, finding [Fe/H] = 3.3 , high [ α /Fe] ratios, and no detectable neutron capture elements, similar to stars in other UFDs. However, this star has an unusually high [Sc/Fe] ratio. The dynamical mass-to-light ratio ( M / L = 760 420 + 910 M L 1 ), size, and chemical abundances confirms that Pic~II is a dark matter-dominated dwarf galaxy. We perform detailed orbit modeling of Pic~II in a combined Milky Way (MW) and LMC potential and find that Pic~II is highly likely to be a long-term LMC satellite. Furthermore, we find that Pic II is likely still bound to the LMC today. Pic~II is the seventh LMC-associated UFD and among the most metal-poor UFDs known. We further update the morphological parameters with deeper Dark Energy Camera (DECam) photometry, compute the dark matter properties for dark matter indirect detection searches, verify the extremely low metallicity with narrowband CaHK imaging, and briefly discuss tidal influences of the LMC and MW. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract We report the discovery and spectroscopic confirmation of an ultra-faint Milky Way satellite in the constellation of Leo. This system was discovered as a spatial overdensity of resolved stars observed with Dark Energy Camera (DECam) data from an early version of the third data release of the DECam Local Volume Exploration (or DELVE) survey. The low luminosity ( M V = 3.5 6 0.37 + 0.47 ; L V = 230 0 700 + 1200 L ), large size ( R 1 / 2 = 9 0 30 + 30 pc), and large heliocentric distance ( D = 11 1 6 + 9 kpc) are all consistent with the population of ultra-faint dwarf galaxies (UFDs). Using Keck/DEIMOS observations of the system, we were able to spectroscopically confirm nine member stars, while measuring a tentative mass-to-light ratio of 70 0 500 + 1400 M / L and a nonzero metallicity dispersion of σ [ Fe / H ] = 0.1 9 0.11 + 0.14 , further confirming Leo VI’s identity as a UFD. While the system has a highly elliptical shape, ϵ = 0.5 4 0.29 + 0.19 , we do not find any conclusive evidence that it is tidally disrupting. Moreover, despite the apparent on-sky proximity of Leo VI to members of the proposed Crater-Leo infall group, its smaller heliocentric distance and inconsistent position in energy–angular momentum space make it unlikely that Leo VI is part of the proposed infall group. 
    more » « less
  3. Abstract We present the discovery of Aquarius III, an ultra-faint Milky Way satellite galaxy identified in the second data release of the DECam Local Volume Exploration survey. Based on deeper follow-up imaging with DECam, we find that Aquarius III is a low-luminosity ( M V = 2.5 0.5 + 0.3 ; L V = 850 260 + 380 L ), extended ( r 1 / 2 = 41 8 + 9 pc) stellar system located in the outer halo (D= 85 ± 4 kpc). From medium-resolution Keck/DEIMOS spectroscopy, we identify 11 member stars and measure a mean heliocentric radial velocity of v sys = 13.1 0.9 + 1.0 km s 1 for the system and place an upper limit ofσv< 3.5 km s−1v< 1.6 km s−1) on its velocity dispersion at the 95% (68%) credible level. Based on calcium-triplet metallicities of the six brightest red giant members, we find that Aquarius III is very metal-poor ([Fe/H]= − 2.61 ± 0.21) with a statistically significant metallicity spread ( σ [ Fe / H ] = 0.46 0.14 + 0.26 dex). We interpret this metallicity spread as strong evidence that the system is a dwarf galaxy as opposed to a star cluster. Combining our velocity measurement with Gaia proper motions, we find that Aquarius III is currently situated near its orbital pericenter in the outer halo (rperi= 78 ± 7 kpc) and that it is plausibly on first infall onto the Milky Way. This orbital history likely precludes significant tidal disruption from the Galactic disk, notably unlike other satellites with comparably low velocity dispersion limits in the literature. Thus, if further velocity measurements confirm that its velocity dispersion is truly belowσv≲ 2 km s−1, Aquarius III may serve as a useful laboratory for probing galaxy formation physics in low-mass halos. 
    more » « less
  4. Abstract We present 18 yr of OGLE photometry together with spectra obtained over 12 yr revealing that the early Oe star AzV 493 shows strong photometric (ΔI< 1.2 mag) and spectroscopic variability with a dominant, 14.6 yr pattern and ∼40 day oscillations. We estimate the stellar parametersTeff= 42,000 K, log L / L = 5.83 ± 0.15 ,M/M= 50 ± 9, andvsini= 370 ± 40 km s−1. Direct spectroscopic evidence shows episodes of both gas ejection and infall. There is no X-ray detection, and it is likely a runaway star. The star AzV 493 may have an unseen companion on a highly eccentric (e> 0.93) orbit. We propose that close interaction at periastron excites ejection of the decretion disk, whose variable emission-line spectrum suggests separate inner and outer components, with an optically thick outer component obscuring both the stellar photosphere and the emission-line spectrum of the inner disk at early phases in the photometric cycle. It is plausible that AzV 493’s mass and rotation have been enhanced by binary interaction followed by the core-collapse supernova explosion of the companion, which now could be either a black hole or a neutron star. This system in the Small Magellanic Cloud can potentially shed light on OBe decretion disk formation and evolution, massive binary evolution, and compact binary progenitors. 
    more » « less
  5. Abstract We report the discovery of six ultra-faint Milky Way satellites identified through matched-filter searches conducted using Dark Energy Camera (DECam) data processed as part of the second data release of the DECam Local Volume Exploration (DELVE) survey. Leveraging deep Gemini/GMOS-N imaging (for four candidates) as well as follow-up DECam imaging (for two candidates), we characterize the morphologies and stellar populations of these systems. We find that these candidates all share faint absolute magnitudes ( M V ≥ −3.2 mag) and old, metal-poor stellar populations ( τ > 10 Gyr, [Fe/H] < −1.4 dex). Three of these systems are more extended ( r 1/2 > 15 pc), while the other three are compact ( r 1/2 < 10 pc). From these properties, we infer that the former three systems (Boötes V, Leo Minor I, and Virgo II) are consistent with ultra-faint dwarf galaxy classifications, whereas the latter three (DELVE 3, DELVE 4, and DELVE 5) are likely ultra-faint star clusters. Using data from the Gaia satellite, we confidently measure the proper motion of Boötes V, Leo Minor I, and DELVE 4, and tentatively detect a proper-motion signal from DELVE 3 and DELVE 5; no signal is detected for Virgo II. We use these measurements to explore possible associations between the newly discovered systems and the Sagittarius dwarf spheroidal, the Magellanic Clouds, and the Vast Polar Structure, finding several plausible associations. Our results offer a preview of the numerous ultra-faint stellar systems that will soon be discovered by the Vera C. Rubin Observatory and highlight the challenges of classifying the faintest stellar systems. 
    more » « less
  6. null (Ed.)
  7. ABSTRACT We present chemical abundances for 21 elements (from Li to Eu) in 150 metal-poor Galactic stars spanning −4.1 < [Fe/H] < −2.1. The targets were selected from the SkyMapper survey and include 90 objects with [Fe/H] ≤ −3 of which some 15 have [Fe/H] ≤ −3.5. When combining the sample with our previous studies, we find that the metallicity distribution function has a power-law slope of Δ(log N)/Δ[Fe/H] = 1.51 ± 0.01 dex per dex over the range −4 ≤ [Fe/H] ≤ −3. With only seven carbon-enhanced metal-poor stars in the sample, we again find that the selection of metal-poor stars based on SkyMapper filters is biased against highly carbon-rich stars for [Fe/H] > −3.5. Of the 20 objects for which we could measure nitrogen, 11 are nitrogen-enhanced metal-poor (NEMP) stars. Within our sample, the high NEMP fraction (55 per cent ± 21 per cent) is compatible with the upper range of predicted values (between 12 per cent and 35 per cent). The chemical abundance ratios [X/Fe] versus [Fe/H] exhibit similar trends to previous studies of metal-poor stars and Galactic chemical evolution models. We report the discovery of nine new r-I stars, four new r-II stars, one of which is the most metal-poor known, nine low-α stars with [α/Fe] ≤ 0.15 as well as one unusual star with [Zn/Fe] = +1.4 and [Sr/Fe] = +1.2 but with normal [Ba/Fe]. Finally, we combine our sample with literature data to provide the most extensive view of the early chemical enrichment of the Milky Way Galaxy. 
    more » « less
  8. ABSTRACT We report the discovery of SMSS J160540.18−144323.1, a new ultra metal-poor halo star discovered with the SkyMapper telescope. We measure $$\left[\rm {Fe}/\rm {H}\right]= -6.2 \pm 0.2$$ (1D LTE), the lowest ever detected abundance of iron in a star. The star is strongly carbon-enhanced, $$\left[\rm {C}/\rm {Fe}\right] = 3.9 \pm 0.2$$, while other abundances are compatible with an α-enhanced solar-like pattern with $$\left[\rm {Ca}/\rm {Fe}\right] = 0.4 \pm 0.2$$, $$\left[\rm {Mg}/\rm {Fe}\right] = 0.6 \pm 0.2$$, $$\left[\rm {Ti}/\rm {Fe}\right] = 0.8 \pm 0.2$$, and no significant s- or r-process enrichment, $$\left[\rm {Sr}/\rm {Fe}\right] \lt 0.2$$ and $$\left[\rm {Ba}/\rm {Fe}\right] \lt 1.0$$ (3σ limits). Population III stars exploding as fallback supernovae may explain both the strong carbon enhancement and the apparent lack of enhancement of odd-Z and neutron-capture element abundances. Grids of supernova models computed for metal-free progenitor stars yield good matches for stars of about $$10\, \rm M_\odot$$ imparting a low kinetic energy on the supernova ejecta, while models for stars more massive than roughly $$20\, \rm M_\odot$$ are incompatible with the observed abundance pattern. 
    more » « less